$(3 \times 25 \text{ mL})$ and dried over anhydrous MgSO₄. Removal of solvent (rotary evaporator) gave 0.34 g of crude product. Distillation under reduced pressure afforded 0.18 g (36%) of a clear, colorless liquid: bp 68-69 °C (0.55 mmHg); PMR (CDCl₃) δ 2.01 (s, CH₃ + γ -H, 6 H), 1.86 (d, β -H, 6 H, J = 2.4 Hz), 1.70 (d, δ -H, 6 H, J = 2.4 Hz); IR (neat) 2910, 2860, 1655, 1450, 1345, 1300, 1045 cm⁻¹. Anal. Calcd for $C_{11}H_{18}S$: C, 72.46; H, 9.95. Found: C, 72.36; H, 10.06.

Kinetic Procedures. Each run was carried out by using nine sealed Kimble Neutraglas ampules. For runs with HFIP-containing solvents, each ampule contained 1 mL of solution, and for all other runs, each ampule contained 5 mL of solution. For runs in water, alcohols, and aqueous-organic mixtures, ampules were removed from the constant temperature bath at suitable time interals, quenched in an ice bath, and the contents rinsed with acetone into 25 mL of acetone, containing Lacmoid (resorcinol blue) indicator, cooled within a solid CO2-acetone slush bath. The acid produced was titrated against a standardized solution of sodium methoxide in methanol. The titration procedures for runs in acetic acid and formic acid and the calculation of the first-order

solvolytic rate coefficients were as previously described.²⁵

Product Studies. Ampules containing a ca. 0.01 M solution of 1-AdSMe2⁺OTf⁻ in ethanol or the appropriate aqueous-ethanol solvent were allowed to react for at least ten half-lives at 70.6 or 100.1 °C. The products were directly analyzed by response-calibrated GLC, as previously described.³⁴ Only 1-adamantanol and 1-adamantyl ethyl ether were detected as products; in particular, no 1-adamantyl methyl sulfide was detected. The 1-adamantyl methyl sulfide was, however, detected after reaction in ethanol in the presence of a large excess of anhydrous⁶⁰ tetraethylammonium chloride.

Acknowledgment. This research was supported, in part, by the award of a Doctoral Research Fellowship to S.W.A. by the NIU Graduate School. D.N.K. thanks T. W. Bentley (University College of Swansea, University of Wales) and H. M. R. Hoffmann (Universität Hannover) for hospitality while this manuscript was being prepared.

Geometries and Energies of the Fluoroethylenes

David A. Dixon,* Tadamichi Fukunaga, and Bruce E. Smart

Contribution No. 3754, E. I. du Pont de Nemours & Co., Central Research & Development Department, Experimental Station, Wilmington, Delaware 19898. Received May 3, 1985. Revised Manuscript Received October 2, 1985

Abstract: The geometries of the fluorinated ethylenes have been gradient optimized at the SCF level with a double- ζ plus polarization function on carbon (DZ+D_C) basis set. The C=C and C-F bond lengths for C₂H₄, C₂H₃F, CH₂CF₂, *cis*-CHFCHF, trans-CHFCHF, and C₂F₄ have been optimized at the configuration-interaction level, including all single and double excitations (CI-SD). Good agreement with the original electron diffraction work was found. The values for r(C=-C) and r(C--F) are found to decrease with increasing fluorine substitution. Correction factors to the SCF values are discussed and an estimated structure for C_2HF_3 is given. Isodesmic reaction ethalpies for the fluoroethylenes have been calculated with $(DZ+D_c)$ and double- ζ plus polarization function (DZ+P) basis sets. Both basis sets gave comparable results in satisfactory agreement with experiment. The calculated heats of formation of *cis*- and *trans*-CHFCHF are -71.0 and -70.0 kcal/mol, respectively, which compare to the experimental values of -70.8 ± 3.1 and -69.4 ± 3.1 kcal/mol. Ionization potentials and dipole moments of the fluoroethylenes also have been calculated and are compared to experimental data.

Fluoroethylenes are very simple compounds and are extremely important monomers, but their structures are not unequivocally established.¹ In a systematic electron diffraction study, Bauer and co-workers² found that the C=C bond length decreases as fluorines are substituted for hydrogen in ethylene. The C=C bond length of 1.315 Å in CH₂CF₂ from a microwave study^{3a} agrees with an electron diffraction value of 1.316 Å.² The bond distances in C₂H₃F as determined by microwave^{3b} and electron diffraction were also in good agreement. Recently, however, the structures of the fluoroethylenes have been redetermined by using a combination of electron diffraction and microwave data,⁴⁻⁸ and the results did not show the expected general trend for a decrease in

- (1) Smart, B. E. In "Molecular Structures and Energetics"; Liebman, J. F., Greenberg, A., Eds.; Verlag Chemie: Deerfield, FL, 1986; Vol. 3, Chapter 4
- (2) Carlos, J. L.; Karl, R. R.; Bauer, S. H. J. Chem. Soc., Faraday Trans 2, 1974, 70, 177.
- (3) (a) Laurie, V. W.; Pence, D. T. J. Chem. Phys. 1963, 38, 2693. (b)
 Laurie, V. W. J. Chem. Phys. 1961, 34, 291.
 (4) Huisman, P. A. G.; Mijlhoff, F. C.; Renes, G. H. J. Mol. Struct. 1979,
- *51*. 191. (5) Spelbos, A.; Huisman, P. A. G.; Mijlhoff, F. C.; Renes, G. H. J. Mol.

- (5) Speloos, A.; Huisman, P. A. G.; Mijinoff, F. C.; Renes, G. H. J. Mol. Struct. 1978, 44, 159.
 (6) VanSchaick, E. J. M.; Mijlhoff, F. C.; Renes, G. H.; Geise, H. J. J. Mol Struct. 1974, 21, 17.
 (7) Mijlhoff, F. C.; Renes, G. H.; Kohata, K.; Oyanagi, K.; Kuchitsu, K. J. Mol. Struct. 1977, 39, 241.
 (8) Mom, V.; Huisman, P. A. G.; Mijlhoff, F. C.; Renes, G. H. J. Mol. Struct. 1980, 62, 95 Struct. 1980, 62, 95.

the value of r(C=C) with increasing substitution of fluorine. In fact, the C==C bond lengths in CH₂CH₂, CH₂CF₂, and CHFCF₂ were reported to be identical within experimental error.^{7,8} The similarity in values for r(C=C) and r(C-F) further complicated the analysis of the electron diffraction data.

As part of our general theoretical study of fluorocarbons, we have optimized the structures of the fluoroethylenes at the SCF level using a double- ζ (DZ) basis set augmented by polarization functions on carbon $(DZ+D_C)$. To obtain accurate geometries and resolve the discrepancies among the experimental measurements, we subsequently optimized the C=C and C-F bonds for C_2H_4 , C_2H_3F , the difluoroethylenes, and C_2F_4 with correlated wave functions starting from the optimum SCF structures. The results are compared with those from previous ab initio calculations.

To further test the reliability of the $DZ+D_C$ basis set, the total energies of the fluoroethylenes were computed and used to calculate isodesmic reaction enthalpies, which are known experimentally. Ionization potentials and dipole moments also were calculated and compared to experiment.

Calculations. The calculations were performed with the HONDO program⁹ package on DEC VAX/11-780 and IBM 3083 computers. Geometries were optimized at the SCF level with the use of gradient techniques.¹⁰ The correlated wave

^{(9) (}a) Dupuis, M.; Rys, J.; King, H. F. J. Chem. Phys. 1976, 65, 111. (b) King, H. F.; Dupuis, M.; Rys, J. National Resource for Computer Chemistry Software Catalog; Program QHO2 (HONDO), 1980; Vol. 1.

functions were obtained at the level of a configuration interaction calculation including all single and double excitations (CI-SD) from the valence space to the virtual space. The C and F 1s core electrons were frozen in the calculation. The orbitals for the CI were obtained from a single-determinant Hartree-Fock calculation. The C=C and C-F bonds were optimized parabolically, starting from the SCF optimum geometries. The basis set for these calculations is of double-5 quality in the valence space with exponents and coefficients from Dunning and Hay.¹¹ The basis set is augmented by a set of d polarization functions on each carbon¹¹ and has the form (9,5,1/9,5/4)/[3,2,1/3,2/2] in the order C, F, H. This basis set gives good structures at the SCF level and previous work¹² has shown that d orbitals on C are significantly more important than d orbitals on F at the SCF level. This basis set is also of tractable size for the CI calculations.

Results and Discussion

Geometries. The SCF parameters for the fluoroethylenes are given in Table I and are compared with the experimental values. The bond angles and C-H bond distances in general agree well with experiment. The only major discrepancies (excluding C_2HF_3) are the value of $\theta(H_2C_1C_2)$ in $C_2H_3F^2$, $\theta(H_3C_2C_1)$ in $C_2H_3F^{35,4}$ and $\theta(CCH)$ in trans-CHFCHF.² These differences are all in the angles involving hydrogen which are not precisely determined by experiment. For C_2HF_3 , the agreement with the angles determined by Mijlhoff and co-workers⁸ is good; however, the agreement with the angles given by Bauer and associates² is not as good. This is probably because of errors in their structure since they assumed that all of the C-F bond lengths were equivalent.

The C=C and C-F bond lengths at the SCF level are shorter than the experimental values, as expected. The SCF values for r(C=C) generally decrease with increasing fluorine substitution. This is especially pronounced for gem-difluoro substitution. The C-F bond lengths also decrease with increasing fluorine substitution and the effect is again most pronounced for gem-difluoro substitution. The SCF values are in agreement with the trend in r(C=C) determined by the Bauer group.²

There have been several theoretical calculations on the structures of the fluoroethylenes. Bock and co-workers¹³ made the most extensive comparison and determined the structures of the ethylenes with 0, 1, and 2 fluorines using a small double- ζ basis set. The C=C bond lengths at this level are too short, even in comparison with the structures determined with the $DZ+D_C$ basis set, and the values for r(C-F) are all too long, even when compared to the experimental values. Optimized geometries determined with both the 4-31G¹⁴ and 3-21G¹⁵ basis sets similarly exhibited overly contracted C=C bonds and elongated C-F bonds. The trend of decreasing r(C=C) with increasing fluorine substitution, however, was found with each of these basis sets.¹³⁻¹⁵

Dykstra and co-workers¹⁶ optimized the structures of cis- and trans-CHFCHF with a fully polarized double- ζ basis set (DZ+P). Excellent agreement with our $DZ+D_C$ calculations is found, except for the C-F bond length which is shorter at the DZ+P level by 0.008-0.009 Å. This again is the expected result of increasing the size of basis set and also has been observed in comparisons of $DZ+D_C$ and DZ+P calculations on the fluoromethanes.¹²

The values for r(C=C) and r(C-F) determined at the level of a CI-SD calculation are also given in Table I. When the CI correction is included, the bonds lengthen, as would be expected from previous studies. The C=C bond lengths increase uniformly

Table I. Geometric Parameters for Flourinated Ethylenes⁴

$\begin{array}{c} \begin{array}{c} C_{2} \mathbf{H}_{4} \\ r(\mathbf{C} = \mathbf{H}) \\ \theta(\mathbf{H} \mathbf{C} \mathbf{H}) \\ (\mathbf{H} \mathbf{C} \mathbf{H}) \\ r(\mathbf{C} = \mathbf{C}) \\ \mathbf{H}_{2} = \mathbf{C}_{4} \mathbf{C}_{5} \\ \mathbf{H}_{5} \\ \mathbf{H}_{5} = \mathbf{C}_{5} \mathbf{C}_{4} \\ \mathbf{H}_{5} \\ \mathbf{H}_{5} = \mathbf{C}_{5} \mathbf{C}_{4} \\ \mathbf{H}_{5} \\ \mathbf{H}_{5} \\ \mathbf{C}_{5} = \mathbf{C}_{5} \\ \mathbf{H}_{5} \\ H$	parameter	expt 1 ^b	expt 2	expt 3	SCF	CI-SD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r(C==C) r(C-=H)		C ₂ H	H ₄ 1.339 ^c 1.086	1.325	1.342
$\begin{array}{c} \underset{r_{H_2} \sim c_1 = c_2 < r_{H_3}}{r_{H_2} \sim c_1 = c_2 < r_{H_3}} \\ r(C=C) & 1.333 & 1.330^d & 1.332^r & 1.314 & 1.330 \\ r(C=H_1) & 1.090 & 1.108 & 1.086 & 1.074 \\ r(C=H_2) & 1.085 & 1.097 & 1.079 & 1.073 \\ r(C=H_2) & 1.085 & 1.097 & 1.079 & 1.073 \\ \theta(H_1C_1C_2) & 121.4 & 120.4 & 120.7 & 121.6 \\ \theta(H_2C_1C_2) & 123.9 & 118.7 & 118.8 & 119.3 \\ \theta(H_1C_2C_1) & 127.7 & 130.8 & 120.9 & 126.0 \\ \theta(FC_1C_2) & 121.0 & 121.5 & 121.0 & 122.6 \\ \hline \\ r(C=C) & 1.316 & 1.340^s & 1.315^h & 1.307 & 1.323 \\ r(C=F) & 1.324 & 1.315 & 1.323 & 1.310 & 1.330 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline \\ r(C=C) & 1.331 & 1.330^i & 1.324^h & 1.312 & 1.329 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline \\ r(C=C) & 1.331 & 1.330^i & 1.334^h & 1.312 & 1.329 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=C) & 1.331 & 1.320^i & 1.22.6 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline \\ rrans-CHF=CHF \\ r(C=C) & 1.329 & 1.320^i & 1.311 & 1.328 \\ r(C=F) & 1.336 & 1.316 & 1.306 & 1.314 \\ r(C=F_1) & 1.360 & 1.088 & 1.072 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline \\ r(C=C) & 1.329 & 1.320^i & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.300 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_1) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(C=F_2) & 1.336 & 1.316 & 1.306 & 1.322 \\ \theta(H_2C_1) & 127.2 & 124.0 & 122.1 \\ \theta(H_2C_1) & 127.2 & 124.0 & 122.1 \\ \end{array}$	Ø(HCH)		C ₂ H	117.0 s ^F	110.8	
$ r(C=C) = 1.333 = 1.330^d = 1.332^r = 1.314 = 1.330 = (1.51)^f r(C=H_1) = 1.085 = 1.097 = 1.079 = 1.073 = (1.51)^f r(C=H_2) = 1.076 = 1.107 = 1.073 = (1.51)^f r(C=H_3) = 1.076 = 1.107 = 1.073 = 0.072 = 0.$			">c1=	c ₂		
$\begin{array}{c} r(C=C) & 1.333 & 1.330^d & 1.332^r & 1.314 & 1.330 \\ r(C=F) & 1.348 & 1.351 & 1.348 & 1.338 & 1.359 \\ r(C=H_1) & 1.090 & 1.108 & 1.086 & 1.074 \\ r(C=H_2) & 1.085 & 1.097 & 1.079 & 1.073 \\ r(C=H_3) & 1.076 & 1.107 & 1.071 & 1.073 \\ \theta(H_1C_1C_2) & 121.4 & 120.4 & 120.7 & 121.6 \\ \theta(H_2C_1C_2) & 121.4 & 120.4 & 120.9 & 126.0 \\ \theta(FC_1C_2) & 121.0 & 121.5 & 121.0 & 122.6 \\ \hline r(C=C) & 1.316 & 1.340^s & 1.315^b & 1.307 & 1.323 \\ r(C=F) & 1.324 & 1.315 & 1.323 & 1.310 & 1.330 \\ r(C=F) & 1.324 & 1.315 & 1.323 & 1.310 & 1.330 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline r(C=C) & 1.331 & 1.330^i & 1.324^b & 1.312 & 1.329 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C=F) & 1.334 & 1.103 & 1.089 & 1.071 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline rrans-CHF=CHF \\ r(C=C) & 1.329 & 1.320^j & 1.311 & 1.328 \\ r(C=F) & 1.344 & 1.338 & 1.072 \\ \theta(CCH) & 121.6 & 1.24.1 & 124.0 & 123.1 \\ \hline rrans-CHF=CHF \\ r(C=C) & 1.399 & 1.316 & 1.310 & (1.321)^l \\ r(C=F) & 1.344 & 1.338 & 1.072 \\ \theta(CCH) & 129.3 & 125.0 & 125.5 \\ \hline r_{C} = r_{C} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{C} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} = r_{S} \\ r_{C} = r_{S} = r_$			H2 -	- \H3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(C=C) r(C-F)	1.333 1.348	1.330 ^d 1.351	1.332 ^e 1.348	1.314 1.338	1.330 1.359 (1.51¥
$\begin{array}{cccc} r(C-H_2) & 1.085 & 1.097 & 1.079 & 1.073 \\ r(C-H_3) & 1.076 & 1.107 & 1.071 & 1.073 \\ \theta(H_1C_1C_2) & 121.4 & 120.4 & 120.7 & 121.6 \\ \theta(H_2C_1C_3) & 121.3 & 118.7 & 118.8 & 119.3 \\ \theta(H_3C_2C_1) & 127.7 & 130.8 & 120.9 & 126.0 \\ \theta(FC_1C_2) & 121.0 & 121.5 & 121.0 & 122.6 \\ \hline \\ r(C=C) & 1.316 & 1.340^g & 1.315^h & 1.307 & 1.323 \\ r(C-F) & 1.324 & 1.315 & 1.323 & 1.310 & 1.330 \\ \hline \\ r(C-H) & 1.075 & 1.091 & 1.079 & 1.072 \\ \theta(FCF) & 109.7 & 110.6 & 109.1 & 109.2 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline \\ r(C=C) & 1.331 & 1.330^i & 1.324^h & 1.312 & 1.329 \\ r(C-F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ \hline \\ r(C-H) & 1.084 & 1.103 & 1.089 & 1.071 \\ \theta(CCF) & 123.7 & 122.0 & 122.1 & 122.6 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 129.3 & 125.0 & 125.5 \\ \hline \\ r(C-F_3) & 1.336 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_3) & 1.336 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_3) & 1.336 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_3) & 1.336 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_3) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-H) & 1.073 & 1.100 & 1.070 \\ \theta(F_1C_2) & 125.4 & 124.0 & 122.8 \\ \theta(F_2C_1C_2) & 125.4 & 124.0 & 122.1 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline \\ \hline \\ r(C-F) & 1.311 & 1.306 & 1.312 \\ r(C-F) & 1.311 & 1.322 \\ \theta(F_2C_1C_2) & 125.4 & 124.0 & 123.1 \\ \hline \\ \hline \\ r(C-F) & 1.311 & 1.320 \\ r(C-F) & 1.311 & 1.320 \\ r(C-F) & 1.311 & 1.322 \\ r(C-F) & 1.334 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_3) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_3) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F) & 1.311 & 1.306 & 1.322 \\ r(C-F) & 1.311 & 1.306 & 1.322 \\ r(C-F) & 1.311 & 1.306 & 1.322 \\ r(C-F) & 1.311 & 1.305 & $	$r(C-H_1)$	1.090	1.108	1.086	1.074	(1.01)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(C-H_2)$	1.085	1.097	1.079	1.073	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(C-H_3)$	1.076	1.107	1.071	1.073	
$\begin{array}{ccccc} \theta(\mathrm{H}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}) & 127.7 & 130.8 & 120.9 & 126.0 \\ \theta(\mathrm{FC}_{1} \mathrm{C}_{2}) & 121.0 & 121.5 & 121.0 & 122.6 \\ \hline & & & & & & & & & & & & & & & & & &$	$\theta(H_1C_1C_2)$ $\theta(H_2C_1C_2)$	121.4	118.7	120.7	121.0	
$\begin{array}{c} \theta(F\dot{C}_{1}\dot{C}_{2}) & 121.0 & 121.5 & 121.0 & 122.6 \\ & CH_{2}=CF_{2} \\ r(C=C) & 1.316 & 1.340^{g} & 1.315^{h} & 1.307 & 1.323 \\ r(C-F) & 1.324 & 1.315 & 1.323 & 1.310 & 1.330 \\ (1.322)^{f} \\ r(C-F) & 109.7 & 110.6 & 109.1 & 109.2 \\ \theta(FCF) & 109.7 & 110.6 & 109.1 & 109.2 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline \\ r(C=C) & 1.331 & 1.330^{i} & 1.324^{h} & 1.312 & 1.329 \\ r(C-F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ r(C-F) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ \theta(CCF) & 123.7 & 122.0 & 122.1 & 122.6 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ r(C-F) & 1.344 & 1.338 & 1.336 & 1.354 \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 129.3 & 125.0 & 125.5 \\ \hline \\ r(C-F_{1}) & 1.336 & 1.316 & 1.304 & (1.315)^{l} \\ r(C-F_{2}) & 1.336 & 1.316 & 1.304 & (1.323)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-F_{3}) & 1.348 & 120.0 & 121.2 \\ \theta(H_{2}C_{1}) & 127.2 & 124.0 & 123.1 \\ \hline \end{array}$	$\theta(H_1C_1C_1)$	127.7	130.8	120.9	126.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta(FC_1C_2)$	121.0	121.5	121.0	122.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CH.=	=CFa		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(C=C)	1.316	1.3408	1.315 ^h	1.307	1.323
$(1.322)'$ $r(C-H) = 1.075 = 1.091 = 1.079 = 1.072$ $\theta(FCF) = 109.7 = 110.6 = 109.1 = 109.2$ $\theta(HCH) = 119.3 = 122.0 = 121.9 = 120.6$ $cis-CHF=CHF$ $r(C=C) = 1.331 = 1.330' = 1.324' = 1.312 = 1.329$ $r(C-F) = 1.335 = 1.342 = 1.335 = 1.331 = 1.349$ $(1.341)'$ $r(C-H) = 1.084 = 1.103 = 1.089 = 1.071$ $\theta(CCF) = 123.7 = 122.0 = 122.1 = 122.6$ $\theta(CCH) = 121.6 = 124.1 = 124.0 = 123.1$ $r(C=F) = 1.344 = 1.338 = 1.336 = 1.354$ $(1.346)'$ $r(C-H) = 1.080 = 1.088 = 1.072$ $\theta(CCF) = 119.3 = 119.8 = 120.1$ $\theta(CCF) = 1.336 = 1.316 = 1.304 = (1.316)^{1}$ $r(C-F_{1}) = 1.336 = 1.316 = 1.304 = (1.321)^{1}$ $r(C-F_{2}) = 1.336 = 1.316 = 1.310 = (1.321)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.342)^{1}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{1}$ $\theta(F_{3}C_{3}C_{1}) = 118.8 = 120.0 = 121.2 = 122.8 = 12$	r(C-F)	1.324	1.315	1.323	1.310	1.330
$\begin{array}{ccccc} r(C=-H) & 1.073 & 1.091 & 1.079 & 1.072 \\ \theta(FCF) & 109.7 & 110.6 & 109.1 & 109.2 \\ \theta(HCH) & 119.3 & 122.0 & 121.9 & 120.6 \\ \hline cis-CHF==CHF \\ r(C==C) & 1.331 & 1.330^i & 1.324^h & 1.312 & 1.329 \\ r(CF) & 1.335 & 1.342 & 1.335 & 1.331 & 1.349 \\ (1.341)^f \\ r(CH) & 1.084 & 1.103 & 1.089 & 1.071 \\ \theta(CCF) & 123.7 & 122.0 & 122.1 & 122.6 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline rrans-CHF==CHF \\ r(C==C) & 1.329 & 1.320^i & 1.311 & 1.328 \\ r(CF) & 1.344 & 1.338 & 1.336 & 1.354 \\ (1.346)^f \\ r(CH) & 1.080 & 1.088 & 1.072 \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCF) & 129.3 & 125.0 & 125.5 \\ \hline r(C=-F_1) & 1.336 & 1.316 & 1.304 & (1.315)^i \\ r(CF_2) & 1.336 & 1.316 & 1.304 & (1.315)^i \\ r(CF_3) & 1.336 & 1.316 & 1.310 & (1.321)^i \\ r(CF_3) & 1.336 & 1.342 & 1.331 & (1.342)^i \\ r(CH) & 1.073 & 1.100 & 1.070 \\ \theta(F_1C_1C_2) & 125.4 & 124.0 & 126.0 \\ \theta(F_2C_1C_2) & 125.4 & 124.0 & 126.0 \\ \theta(F_2C_1C_2) & 125.4 & 124.0 & 126.0 \\ \theta(F_1C_1C_2) & 125.4 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.316 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_4 & r(C==C) \\ r(C=-F) & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.319 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.306 & 1.322 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline cc=F_3 & 1.306 & 1.322 \\ \theta(HC_2C_3) & 1.316 & 1.319 & 1.306 \\ \hline cc=F_3 & 1.326 \\ \hline cc=F_3 & $		1.075	1.001	1.070	1.073	(1.322)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(C - H)	1.075	1.091	1.079	1.072	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta(HCH)$	119.3	122.0	121.9	120.6	
$r(C=C) = 1.331 = 1.330^{i} = 1.324^{h} = 1.312 = 1.329$ $r(C-F) = 1.335 = 1.342 = 1.335 = 1.331 = 1.349$ $r(C-H) = 1.084 = 1.103 = 1.089 = 1.071$ $\theta(CCF) = 123.7 = 122.0 = 122.1 = 122.6$ $\theta(CCH) = 121.6 = 124.1 = 124.0 = 123.1$ $rans-CHF=CHF$ $r(C=C) = 1.329 = 1.320^{i} = 1.311 = 1.328$ $r(C-F) = 1.344 = 1.338 = 1.336 = 1.354$ $r(C-F) = 1.344 = 1.338 = 1.336 = 1.354$ $r(C-H) = 1.080 = 1.088 = 1.072$ $\theta(CCF) = 119.3 = 119.8 = 120.1$ $\theta(CCF) = 119.3 = 119.8 = 120.1$ $\theta(CCH) = 129.3 = 125.0 = 125.5$ $r(C=C) = 1.309 = 1.341^{h} = 1.307 = (1.323)^{l}$ $r(C-F_{1}) = 1.336 = 1.316 = 1.304 = (1.313)^{l}$ $r(C-F_{2}) = 1.336 = 1.316 = 1.304 = (1.321)^{l}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{l}$ $r(C-H) = 1.073 = 1.100 = 1.070$ $\theta(F_{1}C_{1}C_{2}) = 125.4 = 122.1 = 122.8$ $\theta(F_{3}C_{2}C_{1}) = 118.8 = 120.0 = 121.2$ $\theta(HC_{2}C_{1}) = 127.2 = 124.0 = 123.1$ $C_{2}F_{4}$ $r(C=C) = 1.311 = 1.307 = 1.320$ $r(C-F_{2}) = 1.319 = 1.306 = 1.322$. ,		dia CHE	СИБ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(C = C)	1 331	1 3 3 0 ⁱ	CHF 1 324 ^h	1312	1 329
$(1.341)^{f}$ $r(C-H) = 1.084 = 1.103 = 1.089 = 1.071$ $\theta(CCF) = 123.7 = 122.0 = 122.1 = 122.6$ $\theta(CCH) = 121.6 = 124.1 = 124.0 = 123.1$ $trans-CHF=CHF$ $r(C=C) = 1.329 = 1.320^{i} = 1.311 = 1.328$ $r(C-F) = 1.344 = 1.338 = 1.336 = 1.354$ $(1.346)^{f}$ $r(C-H) = 1.080 = 1.088 = 1.072$ $\theta(CCF) = 119.3 = 119.8 = 120.1$ $\theta(CCH) = 129.3 = 125.0 = 125.5$ $r(C-F_{1}) = 1.336 = 1.316 = 1.304 = (1.323)^{i}$ $r(C-F_{1}) = 1.336 = 1.316 = 1.304 = (1.323)^{i}$ $r(C-F_{2}) = 1.336 = 1.316 = 1.304 = (1.323)^{i}$ $r(C-F_{3}) = 1.336 = 1.316 = 1.304 = (1.321)^{i}$ $r(C-F_{3}) = 1.336 = 1.342 = 1.331 = (1.322)^{i}$ $r(C-H) = 1.073 = 1.100 = 1.070$ $\theta(F_{1}C_{1}C_{2}) = 125.4 = 124.0 = 122.8$ $\theta(F_{3}C_{2}C_{1}) = 118.8 = 120.0 = 121.2$ $\theta(HC_{2}C_{1}) = 127.2 = 124.0 = 123.1$ $C_{2}F_{4}$ $r(C=C) = 1.319 = 1.306 = 1.322$	r(C-F)	1.335	1.342	1.335	1.331	1.349
$\begin{array}{ccccc} r(CH) & 1.084 & 1.103 & 1.089 & 1.071 \\ \theta(CCF) & 123.7 & 122.0 & 122.1 & 122.6 \\ \theta(CCH) & 121.6 & 124.1 & 124.0 & 123.1 \\ \hline rans-CHF==CHF \\ r(C=-C) & 1.329 & 1.320^{i} & 1.311 & 1.328 \\ r(CF) & 1.344 & 1.338 & 1.336 & 1.354 \\ (1.346)^{f} & (1.346)^{f} \\ \theta(CCF) & 119.3 & 119.8 & 120.1 \\ \theta(CCH) & 129.3 & 125.0 & 125.5 \\ \hline & & & & & & & & & & & & & & & & & &$						(1.341) [∫]
$\begin{array}{ccccc} \theta(\text{CCF}) & 123.7 & 122.0 & 122.1 & 122.6 \\ \theta(\text{CCH}) & 121.6 & 124.1 & 124.0 & 123.1 \\ & & & & & & & & & & & & & & & & & & $	r(CH)	1.084	1.103	1.089	1.071	
r(C=C) = 1213 + 1243 + 1243 + 1243 + 1253	$\theta(CCH)$	123.7	122.0	122.1	122.6	
$r(C=C) 1.329 1.320^{i} 1.311 1.328 (1.346)^{f}$ $r(C-F) 1.344 1.338 1.336 1.354 (1.346)^{f}$ $r(C-H) 1.080 1.088 1.072 (1.346)^{f}$ $r(C-H) 1.080 1.088 1.072 (1.346)^{f}$ $\theta(CCF) 119.3 119.8 120.1 (1.323)^{i}$ $\theta(CCH) 129.3 125.0 125.5 (1.323)^{i}$ $r(C=C) 1.309 1.341^{k} 1.307 (1.323)^{i}$ $r(C-F_{1}) 1.336 1.316 1.304 (1.315)^{i}$ $r(C-F_{2}) 1.336 1.316 1.310 (1.321)^{i}$ $r(C-H) 1.073 1.100 1.070 (1.342)^{i}$ $r(C-F) 1.318 120.0 121.2 (1.342)^{i}$ $r(C=C) 1.311 1.307 1.320 (1.322)^{i}$ $r(C-F) 1.319 1.306 1.322 (1.322)^{i}$	u(cen)	121.0	124.1		123.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{r}(\mathbf{C} - \mathbf{C})$	1 3 20	trans-CH	F=CHF	1 2 1 1	1 3 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(C - E)	1.344	1.338		1.311	1.354
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.()					(1.346)√
$\begin{array}{ccccccc} \theta(\text{CCF}) & 119.3 & 119.8 & 120.1 \\ \theta(\text{CCH}) & 129.3 & 125.0 & 125.5 \\ & & & & & \\ \hline r(\text{C=C}) & 1.309 & 1.341^k & 1.307 & (1.323)^l \\ r(\text{C}-\text{F}_1) & 1.336 & 1.316 & 1.304 & (1.315)^l \\ r(\text{C}-\text{F}_2) & 1.336 & 1.316 & 1.310 & (1.321)^l \\ r(\text{C}-\text{F}_3) & 1.336 & 1.342 & 1.331 & (1.342)^l \\ r(\text{C}-\text{H}) & 1.073 & 1.100 & 1.070 \\ \theta(\text{F}_1\text{C}_1\text{C}_2) & 125.4 & 124.0 & 126.0 \\ \theta(\text{F}_2\text{C}_1\text{C}_2) & 125.4 & 123.1 & 122.8 \\ \theta(\text{F}_3\text{C}_2\text{C}_1) & 118.8 & 120.0 & 121.2 \\ \theta(\text{HC}_2\text{C}_1) & 127.2 & 124.0 & 123.1 \\ \hline \hline c_2\text{F}_4 & & \\ r(\text{C=C}) & 1.319 & 1.306 & 1.322 \\ \theta(\text{FCC}) & 1.125 & 112.6 \\ \theta(\text{FCC}) & 1.125 & 112.6 \\ \end{array}$	r(C—H)	1.080	1.088		1.072	
$\begin{array}{cccc} c_{2} H^{F}_{3} & & 123.3 \\ \hline & & & & \\ \hline & & & & \\ r(C=C) & 1.309 & 1.341^{k} & 1.307 & (1.323)^{l} \\ r(C-F_{1}) & 1.336 & 1.316 & 1.304 & (1.315)^{l} \\ r(C-F_{2}) & 1.336 & 1.316 & 1.310 & (1.321)^{l} \\ r(C-F_{3}) & 1.336 & 1.342 & 1.331 & (1.342)^{l} \\ r(C-H) & 1.073 & 1.100 & 1.070 \\ \theta(F_{1}C_{1}C_{2}) & 125.4 & 124.0 & 126.0 \\ \theta(F_{2}C_{1}C_{2}) & 125.4 & 123.1 & 122.8 \\ \theta(F_{3}C_{2}C_{1}) & 118.8 & 120.0 & 121.2 \\ \theta(HC_{2}C_{1}) & 127.2 & 124.0 & 123.1 \\ \hline & & & \\ \hline & & & \\ r(C=C) & 1.311 & 1.307 & 1.320 \\ r(C-F_{3}) & 1.319 & 1.306 & 1.322 \\ \theta(FCC_{3}) & 112.6 & 112.6 \\ \end{array}$	$\theta(CCF)$	119.3	119.8		120.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø(CCH)	129.5	125.0	-	125.5	
$r(C=C) 1.309 1.341^{k} 1.307 (1.323)^{l}$ $r(C=F_{1}) 1.336 1.316 1.304 (1.315)^{l}$ $r(C=F_{2}) 1.336 1.316 1.310 (1.321)^{l}$ $r(C=F_{3}) 1.336 1.342 1.331 (1.342)^{l}$ r(C=H) 1.073 1.100 1.070 0 $\theta(F_{1}C_{1}C_{2}) 125.4 124.0 126.0 0$ $\theta(F_{2}C_{1}C_{2}) 125.4 123.1 122.8 0$ $\theta(F_{3}C_{2}C_{1}) 118.8 120.0 121.2 0$ $\theta(HC_{2}C_{1}) 127.2 124.0 123.1 122.8 0$ $\theta(HC_{2}C_{1}) 127.2 124.0 123.1 122.8 0$ $\theta(HC_{2}C_{1}) 127.2 124.0 123.1 123.1 123.1 123.1 1307 1.320 1322 0$ r(C=F) 1.319 1.306 1.322 0 $\theta(FC=C) 1.311 1.306 1.322 0$ $\theta(FC=C) 1.319 1.306 1.322 0$			С ₂ н F,	-3 _F1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			F2 C1=	=C₂<_H		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r(C = C)	1.309	1.341*		1.307	$(1.323)^{l}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(C-F_1)$	1.336	1.316		1.304	$(1.315)^{l}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$r(C-F_2)$	1.336	1.316		1.310	$(1.321)^{l}$
$\begin{array}{ccccc} r(C=-R) & 1.073 & 1.100 & 1.070 \\ \theta(F_1C_1C_2) & 125.4 & 124.0 & 126.0 \\ \theta(F_2C_1C_2) & 125.4 & 123.1 & 122.8 \\ \theta(F_3C_2C_1) & 118.8 & 120.0 & 121.2 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline \\ r(C=-C) & 1.311 & 1.307 & 1.320 \\ r(C=-F) & 1.319 & 1.306 & 1.322 \\ \theta(FCC) & 112.5 & 112.6 \\ \hline \end{array}$	$r(C-F_3)$	1.336	1.342		1.331	$(1.342)^{i}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\theta(\mathbf{F}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3})$	1254	124 0		126.0	
$\begin{array}{ccccccc} \theta(F_3C_2C_1) & 118.8 & 120.0 & 121.2 \\ \theta(HC_2C_1) & 127.2 & 124.0 & 123.1 \\ \hline & & & \\ r(C=C) & 1.311 & & 1.307 & 1.320 \\ r(C-F) & 1.319 & & 1.306 & 1.322 \\ \theta(FCE) & & 112.5 & & 112.6 \\ \hline \end{array}$	$\theta(F_2C_1C_2)$	125.4	123.1		122.8	
$\theta(HC_2C_1) = 127.2 = 124.0 = 123.1$ C_2F_4 $r(C=C) = 1.311 = 1.307 = 1.320$ $r(C-F) = 1.319 = 1.306 = 1.322$	$\theta(F_3C_2C_1)$	118.8	120.0		121.2	
$\begin{array}{c} C_2F_4 \\ r(C=C) & 1.311 \\ r(C-F) & 1.319 \\ r(C-F) & 1.125 \\ r(C-F) & 1.125 \\ r(C-F) & 1.126 \\ r(C-F) $	$\theta(HC_2C_1)$	127.2	124.0		123.1	
r(C=C) 1.311 1.307 1.320 $r(C=F)$ 1.319 1.306 1.322 $r(C=C)$ 1.125 1.126			C ₂	F4		
r(C-F) 1.319 1.306 1.322	r(C=C)	1.311	-		1.307	1.320
	r(С—F) θ(FCF)	1.319			1.306	1.522

^a Bond distances in Å, bond angles in degrees. ^bReference 2. 'Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. J. Phys. Chem. Ref. Data 1979, 8, 619. ^d Reference 4. ^eReference 3b. ^fCorrected values obtained by subtracting 0.008 Å from the CI-SD value. See text. ^gReference 5. ^hReference 3a. ⁱReference 6. ^jReference 7. ^kReference 8. ^lEstimated from the SCF values with use of correction values of +0.016 Å for r(C==C) and +0.011 Å for r-(C-F). See text.

by ~ 0.016 Å, whereas the CF bond lengths show a slightly larger increase of ~0.019 Å.¹⁷ The smallest increases for both values are found for C_2F_4 .¹⁸ The correlation correction gives exactly

⁽¹⁰⁾ Pulay, P. In "Applications of Electronic Structure Theory"; Schaefer,

H. F., III, Ed.; Plenum Press: New York, 1977; Chapter 4.
 (11) Dunning, T. H., Jr.: Hay, P. J. In "Methods of Electronic Structure Theory"; Schaefer, H. F., III, Ed.; Plenum Press: New York, 1977; Chapter 1.

⁽¹²⁾ Dixon, D. A., unpublished results.
(13) Bock, C. W.; George, P.; Mains, G. J.; Trachtman, M. J. Chem. Soc., Perkin Trans 2 1979, 814.

⁽¹⁴⁾ Frenking, G.; Koch, W.; Schaale, M. J. Comput. Chem. 1985, 6, 189.

 ⁽¹⁵⁾ Whiteside, R. A.; Frisch, M. J.; Defrees, D. J.; Schlegel, H. B.;
 Raghavachari, K.; Pople, J. A. "Carnegie-Mellon Quantum Chemistry
 Archive", 2nd ed.; Carnegie-Mellon University: Pittsburgh, 1981.
 (16) Gandhi, S. R.; Benzel, M. A.; Dykstra, C. E.; Fukunaga, T. J. Phys.

Chem. 1982, 86, 3121.

⁽¹⁷⁾ Comparison with experiment is complicated by the variety of distance parameters reported. We calculate r_{e} and the various reported values may vary by up to 0.01 Å from this value. See: Yokozeki, A.; Bauer, S. H. Top. Curr. Chem. 1975, 53, 72.

Table II. Total Energies (au) of the Fluoroethylenes Determined at the Optimum SCF Geometry $(DZ+D_C)$

 B(,	· · · · · · · · · · · · · · · · · · ·	1			
molecule	SCF(DZ+D _c)	SCF(DZ+P)	Cl-SD(DZ+D _c)	CI-SDQ(DZ+D _c)	
 C ₂ H ₄	-78.042712	-78.050 701	-78.295 362	-78.318 555	
C,H,F	-176.912823	-176.929856	-177.251 795	-177.286 675	
CH ₂ CF ₂	-275.785037	-275.814166	-276.207 838	-276.255 453	
cis-CHFCHF	-275.771 009	-275.798143	-276.193 007	-276.240 925	
trans-CHFCHF	-275.771 357	-275,797942	-276.193 450	-276.241 486	
C ₂ HF ₃	-374.635 360	-374.674803			
C_2F_4	-473.492467	-473.544715	-474.074774	-474.151 803	

Table III. Isodesmic Reaction Energies

•	$\Delta H^{\circ}/\Delta E$ (kcal/mol)				
eq	3-21G ^a	DZ+D _c	DZ+P	$\Delta H^{\circ}(\text{exptl})^{b}$	
1	5.0/4.6	1.7/1.3	3.6/3.2	1.1 ± 1.9	
2	-5.0/-6.4	-6.7/-8.1	-4.4/-5.8	-5.0 ± 3.1	
3	7.7/6.9	5.2/4.4	6.4/5.8	3.6 ± 5.2	
4	-17.7/-17.9	-13.6/-13.8	-14.7/-14.9	-9.8 ± 4.0	
5	-22.6/-24.2	-20.3/-21.9	-19.1/-20.7	-14.6 ± 2.3	
6	-12.7/-13.3	-11.8/-12.4	-11.0/-11.6	-8.6 ± 3.5	

^aTotal energies determined at the optimum 3-21G geometry. The energies for C_2H_4 , C_2H_3F , and CH_2CF_2 are from ref 15. The energies for C_2HF_3 and C_2F_4 are -372.54589 and -470.85534 au, respectively (this work). ^bCalculated from experimental ΔH_f° values in Table IV.

the same trends that are observed at the SCF level: the values for r(C=C) and r(C-F) decrease with increasing fluorine substitution. The C=C bond lengths at the CI level are in excellent agreement with those determined by the Bauer group.² The C-F bond lengths are all somewhat longer than the experimental values. This is probably because of errors at the SCF level where the C-F bonds are 0.008 Å too long as compared to the DZ+P calculated values. When this correction is applied to the CI values (except for C_2F_4), the C-F bond lengths are now in excellent agreement with experiment (Table I). We also have estimated r(C=C) and $r(C-F_i)$ for C_2HF_3 using a correction of +0.016 Å for r(C=C) and a correction of +0.011 Å for r(C-F)(0.019-0.008 Å) to give the values in Table I. The r(C=C) and r(C-F) values for each fluoroethylene that we consider to be most accurate are italicized.

Energetics. The total SCF energies of the fluoroethylenes were determined at the SCF $(DZ+D_C)$ optimized geometries with the $DZ+D_{C}$ basis set and with a basis set that included polarization functions on all atoms (DZ+P).¹¹ The values, which are listed in Table II, were used to calculate the energies of the isodesmic reactions in eq 1-6. The results are given in Table III. (The SCF isodesmic ΔE values calculated with the DZ+P basis set with use of the most accurate geometries from Table I rather than the $DZ+D_C$ optimized geometries gave very similar results: 2.6, -7.0, 5.2, -14.8, -21.8, -12.2 kcal/mol for eq 1-6, respectively.)

$$C_2H_4 + CH_2CF_2 \rightarrow 2C_2H_3F \tag{1}$$

$$C_2H_4 + C_2F_4 \rightarrow C_2H_3F + C_2HF_3 \tag{2}$$

$$CH_2CF_2 + C_2F_4 \rightarrow 2C_2HF_3 \tag{3}$$

$$C_2HF_3 + C_2H_3F \rightarrow 2CH_2CF_2 \tag{4}$$

$$C_{2}H_{4} + C_{2}F_{4} \rightarrow 2CH_{2}CF_{2}$$
(5)

$$C_2H_4 + C_2HF_3 \rightarrow CH_2CF_2 + C_2H_3F \tag{6}$$

To properly compare the theoretical results to experiment, the calculated ΔE values need to be converted to ΔH values. The required zero-point energies for the fluoroethylenes were calculated with the 3-21G basis set¹⁹ and scaled values are given in Table IV. The calculated isodesmic reaction energies corrected for zero-point energy differences are compared with experiment and 3-21G results in Table III.

The calculated ΔH° values for reactions 1-4 and 6 with both of our basis sets agree well with experiment. The 3-21G results are less satisfactory. The DZ+P results for reactions 1 and 4 are slightly outside the experimental errors. The greatest discrepancy between theory and experiment appears in reaction 5. The error is 4.5 kcal/mol with the DZ+P basis set and 5.7 kcal/mol with the $DZ+D_C$ basis set. Among the five isodesmic equations, the neglect of correlation energy is also likely to produce the largest error for eq 5.

Because of the large number of fluorine valence electrons, CI-SD calculations do not recover as much of the correlation energy as that found for systems with fewer valence electrons. This occurs because higher order excitations play a larger role, simply because of the very large number of such excitations. Furthermore, size consistency problems can become significant. This will be especially true for isodesmic reactions involving C_2F_4 . We therefore do not recommend applying a CI correction involving only single and double excitations to the isodesmic energies. (Such problems, however, are not expected to play a major role in the calculations of geometries.) For example, using the CI energies given in Table III, we calculate $\Delta H^{\circ} = -27.0$ kcal/mol at the CI-SD level and -23.8 kcal/mol at the CI-SDQ level for isodesmic reaction 5. The latter calculation includes an estimate for quadrupole excitations using Davidson's formula.20 Thus, inclusion of higher order excitations gives a result in the right direction, but a large error is still present.

The energy difference between cis- and trans-1,2-difluoroethylene has been determined quite precisely from experiment.²¹ Contrary to simple chemical intuition, the cis isomer is more stable than the trans isomer by $0.93 \pm 0.03 \text{ kcal/mol} (\Delta \Delta H_{\rm f}^{\circ})$. There have been numerous theoretical studies of this energy difference,^{13,14,16,22} with the most extensive one being that of Dykstra and co-workers.¹⁶ At the $DZ+D_C$ level (Table II) the trans structure is more stable by 0.22 kcal/mol. There is essentially no correlation correction with this basis set, $\Delta E(\text{CI-SD}) = 0.28$ kcal/mol and $\Delta E(\text{CI-SDQ}) = 0.35$ kcal/mol (Table II). As expected from previous results,¹⁶ improvement of the basis set leads to a better ΔE . At the DZ+P level the cis isomer is correctly calculated to be more stable than the trans, but by only 0.13 kcal/mol.

The experimental heats of formation of cis- and trans-1,2difluoroethylene are not known precisely (Table IV). The trans isomer is predicted experimentally to be 10.7 ± 3.9 kcal/mol less stable than CH_2CF_2 . With the $DZ+D_C$ basis set, the energy difference is 8.6 kcal/mol, favoring CH₂CF₂. Again there is essentially no correlation correction for this energy difference, $\Delta E(\text{CI-SD}) = 9.0 \text{ kcal/mol and } \Delta E(\text{CI-SDQ}) = 8.8 \text{ kcal/mol.}$ Improvement of the basis set leads to a small change in ΔE , which is 10.1 kcal/mol with the DZ+P basis set. After correcting for zero-point energy differences, our best estimates of the heats of formation are -70.0 kcal/mol for trans-CHFCHF and -71.0 kcal/mol for cis-CHFCHF.

⁽¹⁸⁾ The largest errors would be expected for C_2F_4 because the basis set size is the smallest considering the number of electrons. The CI at the SD level also recovers the smallest percentage of correlation energy for C₂F₄, again due to the large number of electrons

⁽¹⁹⁾ Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.

⁽²⁰⁾ Langhoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61.

⁽²⁰⁾ Langnoff, S. R.; Davidson, E. R. Int. J. Quantum Chem. 1974, 8, 61.
(21) (a) Entemann, E. A.; Craig, N. C. J. Am. Chem. Soc. 1961, 83, 3047.
(b) Craig, N. C.; Overend, J. J. Chem. Phys. 1969, 51, 1127. (c) Craig, N. C.; Piper, L. G.; Wheeler, V. G. J. Phys. Chem. 1971, 75, 1453.
(22) (a) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3633. (b) Cremer, D. Chem. Phys. Lett. 1981, 81, 481. (c) Skancke, A.; Boggs, J. E. J. Am. Chem. Soc. 1979, 101, 4063. (d) Binkley, J. S.; Pople, J. A. Chem. Phys. Lett. 1977, 45, 1977. (e) Whangbo, M.-H.; Mitchell, D. J.; Wolfe, S. J. Am. Chem. Soc. 1978, 100, 3698. (f) Bernardi, F.; Bottani, A.; Epiotis, N. D.; Guerra, M. J. Am. Chem. Soc. 1976, 100, 6018. (g) Moffat, J. B. THEOCHEM 1982, 5, 325 325

Table IV. Heats of Formation, Zero-Point Energies, and Dipole Moments

			μ, ^c D			
ethylene	ΔH_{f} ° a	ZPE ^b	$(DZ+D_C)$	(DZ+P)	(Cl-SD)	exptl
C ₂ H ₄	12.5 ± 0.3	30.9 (30.9)				
C,H,F	-33.2 ± 0.4	27.1	1.92	1.67	1.73	1.43
CH,CF,	-80.1 ± 0.8	22.9 (22.1)	1.82	1.44	1.62	1.38
trans-CHFCHF	-69.4 ± 3.1^{d}	$22.8(22.5)^{e}$				
cis-CHFCHF	-70.8 ± 3.1^{d}	23.1 (22.7)	3.26	2.87	2.94	2.42
C ₃ HF ₃	-117.2 ± 2	18.5	1.79	1.52		1.40
C ₂ F₄	-157.9 ± 0.4	13.3 (13.3)				

^a In kcal/mol. Unless noted otherwise, from: Pedley, J. B.; Rylance, J. "Sussex-N.P.L. Computer Analyzed Thermochemical Data: Organic & Organometallic Compounds"; University of Sussex: Sussex, Brighton, 1977. ^b 3-21G calculated values multiplied by 0.90, in kcal/mol. Experimental values in parentheses were calculated from vibrational frequency data: Shimanouchi, T. "Tables of Molecular Vibrational Frequencies", NSRDS-NBS 39: U.S. Government Printing Office: Washington, DC, 1972. Calculated dipole moments at the SCF minimum geometry (DZ+D_c). Experimental values from: Nelson, R. D., Jr.; Lide, D. R., Jr.; Maryott, A. A. "Selected Values of Electric Dipole Moments for Molecules in the Gas phase"; NSRDS-NB10: U.S. Government Printing Office: Washington, DC, 1967. McClellan, A. L. "Tables of Experimental Dipole Moments"; W. H. Freeman: San Francisco, 1963; Vol. 1. ^d Jochims, H. W.; Lohr, W.; Baumgärtel, H. Nouv. J. Chim. 1979, 3, 109. ^e Reference 21b.

The effects of fluorination of the geometries and stabilities of ethylenes and the diverse explanations for these effects have been reviewed elsewhere.¹ Among the various proposals to account for the relative stabilities of the three $C_2H_2F_2$ isomers are nonbonded attraction,^{22e,f,23} conjugative destabilization,²⁴ resonance stabilization,^{21c,25} hyperconjugation,²⁶ as well as electrostatic^{13,14} and other electronic effects.²⁷ It is not our intention to try to sort out and pinpoint the specific electronic effects that determine fluoroethylene geometries and energies. Rather, we seek to identify the requirements for a basis set that are crucial for reasonably accurate calculations of geometries and energies. It is noteworthy, however, the whatever the actual electronic reasons might be, the relative stabilities of the fluoroethylenes appear to be entirely a consequence of their relative π -bond strengths.

From the D_{π}° values of 59.1, 62.8, and 52.3 kcal/mol for CH₂CH₂, CH₂CF₂, and CF₂CF₂,²⁸ respectively,

$$D_{\pi}^{\circ}(CF_2=CF_2) + D_{\pi}^{\circ}(CH_2=CH_2) - 2D_{\pi}^{\circ}(CH_2=CF_2) = -14.2 \text{ kcal/mol}$$

Within experimental error, this result is identical with the enthalpy of isodesmic reaction 5. Similarly,

$$D_{\pi}^{\circ}(CH_2 = CF_2) - D_{\pi}^{\circ}(c - CHF = CHF)^{29} = 8.4 \text{ kcal/mol}$$

This difference compares to the above DZ+D_C computed value of 8.8 kcal/mol for the difference in energy (ΔE) between *cis*-CHFCHF and CH₂CF₂.

Ionization Potentials and Dipole Moments. The ionization potentials of the fluoroethylenes are all known experimentally and

(24) Bingham, R. C. J. Am. Chem. Soc. 1976, 98, 535.
(25) (a) Viehe, H. G. Chem. Ber. 1963, 93, 953. (b) Pitzer, K. S.; Hollenberg, J. L. J. Am. Chem. Soc. 1954, 76, 1493.
(26) (a) Schleyer, P. v. R.; Kos, A. J. Tetrahedron 1983, 39, 1141. (b) Hoffman, R.; Radom, L.; Pople, J. A.; Hehre, W. J.; Salem, L. J. Am. Chem.

Hoffman, R.; Radom, L.; Pople, J. A.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1972, 94, 6221. (27) (a) Snyder, W. H.; Hollein, H. C. J. Mol. Struct. 1982, 84, 83. (b) Kollman, P. A. J. Am. Chem. Soc. 1974, 96, 4363. (28) (a) Wu, E.-C.; Rodgers, A. S. J. Am. Chem. Soc. 1976, 98, 6112. (b) Pickard, J. M.; Rodgers, A. S. J. Am. Chem. Soc. 1977, 99, 695. (29) $D_r^{\circ}(c\text{-CHF}=\text{CHF})$ is not known experimentally. The value for $D_r^{\circ}(\text{CH}_2=\text{CH}_2) - D_r^{\circ}(c\text{-CHF}=\text{CHF})$ was equated to the difference in activation energies for the cis-trans isomerizations of CHD=CHD and CHF=CHF (4.7 kcal/mol)³⁰ (the difference in π -bond energies between CF₂=CH₂ and CH₂=CH₂, 3.7 kcal/mol, is equivalent within experimental error to the computed difference in their rotational barriers, 3 kcal/mol³¹). Thus, D_{π}° (c-CHF=CHF) \cong 54.4 kcal/mol. (30) Jeffers, P. M. J. Phys. Chem. 1974, 78, 1469. (31) Nagase, S.; Morokuma, K. J. Am. Chem. Soc. 1978, 100, 1661.

Table V. Ionization Potentials in eV

ethylene	DZ+D _c	DZ+P	exptl ^a
C ₂ H ₄	10.27	10.26	10.51
C_2H_3F	10.58	10.48	10.56
CH_2CF_2	10.95	10.74	10.69
cis-CHFCHF	10.84	10.64	10.44
trans-CHFCHF	10.84	10.64	10.38
C_2HF_3	11.17	10.85	10.54
C_2F_4	11.48	11.05	10.56

^aReference 32. ^bLevin, R. D.; Lias, S. G. "Ionization Potential and Appearance Potential Measurements 1971-1981"; NSRDS-NBS 71: U.S. Government Printing Office: Washington, DC, 1982. See this reference for other values for the fluoroethylenes.

are about 10.5 eV.³² The calculated IP's from Koopmann's theorem are given in Table V and show excellent agreement with experiment considering the approximations involved. As expected, the DZ+P values show slightly better agreement. Although the fluoroethylene IP's are about equal, one trend is evident. For the $C_2H_2F_2$ isomers, the highest IP corresponds to the most stable isomer (CH₂CF₂) and the lowest IP corresponds to the least stable isomer (trans-CHFCHF). The differences in the IP's are similar to the differences in the $\Delta H_{\rm f}^{\circ}$'s for the isomers. The IP(CH₂CF₂) is 7.1 kcal/mol higher than IP(trans-CHFCHF), which approaches the difference of 10 kcal/mol in $\Delta H_{\rm f}^{\rm o}$'s. The IP difference between the cis and trans isomers is 1.4 kcal/mol, which compares to the difference in $\Delta H_{\rm f}^{\circ}$'s of 0.9 kcal/mol.²¹

The experimental and calculated dipole moments, which were determined at the minimum SCF geometry $(DZ+D_C)$, are given in Table IV. The $DZ+D_C$ values are roughly 30% high, whereas the DZ+P values are about 15% high. As expected, including correlation lowers the dipole moment, but the effect is slightly smaller than that found by improving the basis set.

Conclusions

This study demonstrates that the geometries of the fluoroethylenes exhibit simple trends. The $DZ+D_C$ basis set gives a good description of the structure of the fluoroethylenes with errors like those typically found in other SCF calculations with good basis sets. Correlation corrections at the CI-SD level provide a uniform correction and give very good structural parameters in comparison to experiment. We expect that our structures are accurate to within $\pm 1^{\circ}$ for bond angles and ± 0.01 Å for bond lengths, which are typical experimental errors. Finally, we have demonstrated the adequacy of the $DZ+D_C$ basis set for predicting reasonable, consistent geometries and energies for these fluorocarbons. This basis set is still of a modest enough size that it can be applied to larger fluorocarbon systems.

^{(23) (}a) Epiotis, N. D. "Lecture Notes in Chemistry, No. 29. Unified Valence Bond Theory of Electronic Structure"; Springer-Verlag: New York, 1982. (b) Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R. L.; Bernardi, F. Top. Curr. Chem. 1977, 70, 1. (c) Epiotis, N. D.; Yates, R. L. J. Am. Chem. Soc. 1976, 98, 461.

⁽³²⁾ Sell, J. A.; Kupperman, A. J. Chem. Phys. 1979, 71, 4703.